

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Code of conduct

This repository is governed by Mozilla's code of conduct and etiquette guidelines. For more details please see the Mozilla Community Participation Guidelines [https://www.mozilla.org/about/governance/policies/participation/] and Developer Etiquette Guidelines [https://bugzilla.mozilla.org/page.cgi?id=etiquette.html].

Contribution guide

The "interactive-examples" repository provides interactive examples for MDN Web Docs [https://developer.mozilla.org].

If you're interested in contributing to this project, great! This file should help you get started.

Types of contribution

There are many ways you can help improve this repository! For example:

	Write a brand-new example: for example, you might notice that there are no
examples for a particular CSS property [https://developer.mozilla.org/en-US/docs/Web/CSS/Reference].

	Improve an existing example: for example,
you might notice a problem with an existing example, or some way it could be made more helpful.

	Fix a bug: we have a list of issues [https://github.com/mdn/interactive-examples/issues],
or maybe you found your own.

This guide focuses on contributing examples, although we welcome contributions to the editor and infrastructure code as well.

Setup

To contribute live examples all you need is a text editor, git, a GitHub account, and Nodejs.

As far as text/code editors go, there are more editors than you can shake a stick at, so it's down to personal preference. Atom [https://atom.io/] is a great, open source editor we can definitely recommend.

For more information on setting up Git on your machine, read this article [https://help.github.com/articles/set-up-git/].

With the above dependencies satisfied, create your new account on Github [https://github.com/join].

Lastly, install Nodejs for your operating system [https://nodejs.org/].

Fork and clone

Next up, you need to fork and clone the repo to be able to contribute to it. You can learn about forking on Github [https://help.github.com/articles/fork-a-repo]. Once you have your own fork, clone it to your local machine [https://help.github.com/articles/cloning-a-repository/].

Finally, change into the new directory created by the clone and run the following command:

npm install

This will ensure that you have all the required development modules installed to build and test your contributions. You are now ready to contribute. Thank you o/\o

Contributing a CSS example

Writing the example

You start off by creating a new file inside the subfolder live-examples\css-examples\. The name of this file should match the example you are adding. For example, if you are adding examples for border-radius [https://developer.mozilla.org/en-US/docs/Web/CSS/border-radius] you would call this file border-radius.html. On the other hand, the folder name should match the name of the CSS Specification to which the example belongs. For example, border-radius is part of "CSS Backgrounds and Borders Level 3", hence the example should be created in the "backgrounds-and-borders" folder. This information is available in the specifications section of the documentation on MDN. For example, for border-radius this can be found here [https://developer.mozilla.org/en-US/docs/Web/CSS/border-radius#Specifications].

Inside this newly created file, copy and paste the following code:

<section id="example-choice-list" class="example-choice-list large" data-property="border-radius">

 <div class="example-choice" initial-choice="true">
 <pre><code class="language-css">Your CSS goes here</code></pre>
 <button type="button" class="copy hidden" aria-hidden="true">
 Copy to Clipboard
 </button>
 </div>

</section>

<div id="output" class="output large hidden">
 <section id="default-example" class="default-example">
 <div id="example-element" class="transition-all"></div>
 </section>
</div>

This is the base starting point for all CSS examples.

It consists of two main pieces:

	The example CSS: the section#example-choice-list contains one or more div.example-choice elements. These are the choices that will be presented to the user on the left-hand side of the editor. Each choice contains some CSS declarations that will be applied to the example element when the user selects that choice.

	The example element: the section#default-example contains all the markup for the editor's output pane. At a minimum this will contain a node with id="example-element": this is the element that the chosen example CSS will be applied to.

Let's fill this in for border-radius.

First, we'll specify the example element. For border-radius it makes sense to have a simple <div> element with a solid background color. The already present div#example-element will do. However, let's give it the text "Style Me":

<div id="output" class="output large hidden">
 <section id="default-example" class="default-example">
 <div id="example-element" class="transition-all">Style Me!</div>
 </section>
</div>

When it makes sense to do so, you can also supply additional DOM elements here. For example, the position [https://interactive-examples.mdn.mozilla.net/pages/css/position.html] example has one box which is the "example-element", but also includes extra boxes to show how setting the position property for an element interacts with the other elements in a layout.

Next, let's add the example CSS choices. Think of a few different ways that border-radius can be specified. For each of these, create a new div.example-choice element nested inside section#example-choice-list. For example:

<section id="example-choice-list" class="example-choice-list large" data-property="border-radius">

 <div class="example-choice" initial-choice="true">
 <pre><code class="language-css">border-radius: 10px;</code></pre>
 <button type="button" class="copy hidden" aria-hidden="true">
 Copy to Clipboard
 </button>
 </div>

 <div class="example-choice">
 <pre><code class="language-css">border-radius: 10px 50%;</code></pre>
 <button type="button" class="copy hidden" aria-hidden="true">
 Copy to Clipboard
 </button>
 </div>

 <div class="example-choice">
 <pre><code class="language-css">border-radius: 10px 5px 6em / 20px 25px 30%;</code></pre>
 <button type="button" class="copy hidden" aria-hidden="true">
 Copy to Clipboard
 </button>
 </div>

</section>

The first thing to note is that the section element has a data-property attribute whose value is the name of the property, border-radius in this case. The editor uses this to test whether the user's browser supports the property. If it doesn't, then an interactive example won't work, and we just display the CSS options without their output. If you know that the example property has good cross-browser support, you can omit this attribute (for example, the border-radius example could certainly omit it).

Next, we have three div elements, one for each example CSS choice. You can choose which option will be shown at first by setting the initial-choice attribute to true (only one choice should have this).

Now we've finished writing the HTML for the example. The final version of border-radius.html should look like this:

<section id="example-choice-list" class="example-choice-list large" data-property="border-radius">

 <div class="example-choice" initial-choice="true">
 <pre><code class="language-css">border-radius: 10px;</code></pre>
 <button type="button" class="copy hidden" aria-hidden="true">
 Copy to Clipboard
 </button>
 </div>

 <div class="example-choice">
 <pre><code class="language-css">border-radius: 10px 50%;</code></pre>
 <button type="button" class="copy hidden" aria-hidden="true">
 Copy to Clipboard
 </button>
 </div>

 <div class="example-choice">
 <pre><code class="language-css">border-radius: 10px 5px 6em / 20px 25px 30%;</code></pre>
 <button type="button" class="copy hidden" aria-hidden="true">
 Copy to Clipboard
 </button>
 </div>

</section>

<div id="output" class="output large hidden">
 <section id="default-example" class="default-example">
 <div id="example-element" class="transition-all">Style Me!</div>
 </section>
</div>

When you're writing examples, please make sure that they conform to the CSS Example Style Guide.

Styling the example

Next, let's provide some extra styling for the example element. Create a new CSS file inside the current folder. Call this CSS file the same as the HTML file i.e. border-radius.css. Add the following code to it:

#example-element {
 background-color: #74992E;
 width: 250px;
 height: 80px;
}

Including media

Some examples will need to reference media, such as images, from the CSS. Make sure that the license terms for any images are acceptable.

Media files should be stored in the /media/examples [https://github.com/mdn/interactive-examples/tree/master/media/examples] directory, and can be referenced using a path like "/media/examples/my-file":

background-image: url("/media/examples/lizard.png");

Updating the metadata

Next, you need to tell the page generator about your new page and its dependencies. To do this, open up the meta.json file in the current folder (i.e. "live-examples/css-examples/backgrounds-and-borders/meta.json").

Under pages, copy and paste the example then update it to apply to your new example, noting that pages are sorted alphabetically. You entry will look something like this when edited:

"borderRadius": {
 "baseTmpl": "tmpl/live-css-tmpl.html",
 "cssExampleSrc": "../../live-examples/css-examples/backgrounds-and-borders/border-radius.css",
 "exampleCode": "live-examples/css-examples/backgrounds-and-borders/border-radius.html",
 "fileName": "border-radius.html",
 "title": "CSS Demo: border-radius",
 "type": "css"
},

The title property is displayed above the editor, and should be of the form: "CSS Demo: {item}", where {item} is the name of the item that the example is for. If you're not sure what to use for {item}, use the title of the page.

Special rules for CSS functions and types

The guidance above assumes you're documenting a CSS property. But you can also write examples for CSS functions, like linear-gradient() [https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient], or types, like angle [https://developer.mozilla.org/en-US/docs/Web/CSS/angle]. If you do this, there are a couple of special considerations.

	the name of the HTML file you write must be prefixed with function- for functions, or type- for types.

	in the meta.json file, the name of the output HTML file must be prefixed in the same way.

So the meta.json entry for a function would look like:

"translateX": {
 "baseTmpl": "tmpl/live-css-tmpl.html",
 "cssExampleSrc":
 "../../live-examples/css-examples/transforms/translate.css",
 "exampleCode":
 "live-examples/css-examples/transforms/function-translateX.html",
 "fileName": "function-translateX.html",
 "title": "CSS Demo: translateX()",
 "type": "css"
}

and the meta.json entry for a type would look like:

"angle": {
 "baseTmpl": "tmpl/live-css-tmpl.html",
 "cssExampleSrc": "../../live-examples/css-examples/values-and-units/angle.css",
 "exampleCode": "live-examples/css-examples/values-and-units/type-angle.html",
 "fileName": "type-angle.html",
 "title": "CSS Demo: <angle>",
 "type": "css"
}

Once you've finished writing the example, see the Testing section for the next step.

Contributing a JavaScript example

Writing the example

With a JavaScript example you start by creating a new .html file in a subfolder of live-examples/js-examples. In this example we are going to contribute an example demonstrating the use of Array.from so, we'll create a new file called array-from.html. Since it is part of the Array object, we're going to put it inside the "array" subfolder.

Next, you need to paste the following code into this new file (this will be the same for all JavaScript examples you add):

<pre>
<code id="static-js" class="language-js">
</code>
</pre>

Inside the code block is where our example code will go. Change the code to read as follows:

<pre>
<code id="static-js">// call from(), passing a string
let result = Array.from('foo');

// log the result
console.log(result);
</code>
</pre>

Please make sure the example conforms to the JS Example Style Guide.

NOTE: Should your example exceed the ideal of 12 lines of code,
you should set the following data attribute on the code element. This will ensure the editor height
is taller, allowing you up to 23 total lines of example code.

<pre>
<code id="static-js" data-height="taller">// call from(), passing a string
...

Updating the metadata

All that remains is to tell the page generator about our new example. To do this, open up meta.json in the current folder (i.e. at "live-examples/js-examples/array/meta.json").

Under pages, copy and paste the example then update it to your new example, noting that pages are sorted alphabetically.

You entry will look something like the following when edited:

"arrayFrom": {
 "baseTmpl": "tmpl/live-js-tmpl.html",
 "exampleCode": "live-examples/js-examples/array/array-from.html",
 "fileName": "array-from.html",
 "title": "JavaScript Demo: Array.from()",
 "type": "js"
},

The title property is displayed above the editor, and should be of the form: "JavaScript Demo: {item}", where {item} is the name of the item that the example is for. If you're not sure what to use for {item}, use the title of the page.

Once you've finished writing the example, see the Testing section for the next step.

Contributing an HTML example

HTML interactive examples are presented in two sections, side by side.

The left-hand side contains, minimally, a code editor containing some HTML. It will usually also contain some CSS: in this case the CSS is presented in its own editor, accessible via tabs at the top of the left-hand side.

The right-hand side contains the rendered HTML, styled according to any CSS that was provided.

[image: Example screenshot for]

To write an interactive HTML example, you need to write the HTML and, if you need it, the CSS. You then need to update some metadata to tell the site builder about the new example.

In this section we'll walk through creating an example for the <td> [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/td] element.

Writing the example

Create a new file under "live-examples/html-examples". Name it after the name of the element or attribute you are demonstrating, and give it an "html" suffix:

cd live-examples/html-examples/
touch td.html

In this file we'll add the HTML fragment that will be displayed in the HTML editor. The fragment will need to include all the extra HTML needed to render the example, and should use good practices as far as possible. For example, in this case we'll include a complete <table> element. The example should also try to show some important attributes. Try to keep the example to under 20 lines.

An example for <td> could look something like this:

<table>
 <thead>
 <tr>
 <th colspan="3">Table heading</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td rowspan="2">2-row cell</td>
 <td>A cell value</td>
 <td>Another cell</td>
 </tr>
 <tr>
 <td colspan="2">2-column cell</td>
 </tr>
 </tbody>
</table>

Styling the example

Often the example will want some CSS. In this case, the table will be much easier to read if it's given some basic styling.

To add CSS, create a new file under "live-examples/html-examples/css". Give it the same name as the HTML file, but with a ".css" prefix.

cd live-examples/html-examples/css
touch td.css

(Note that you don't have to create a new file. If an existing CSS file already contains the styles you need, you can just use that.)

For the <td> example, we could do something like this:

table,
td {
 border: 1px solid #333;
 padding: .5rem;
}

thead {
 background-color: #333;
 color: #fff;
}

Updating the metadata

In "live-examples/html-examples/" there's a file called "meta.json". This tells the site builder about the examples inside the directory.

Open this file. It contains a JSON object whose most interesting property is an object called pages. Each property of pages is a page we want the site builder to build.

Add a property under pages describing your example. The example for <td> could look like this:

"td": {
 "baseTmpl": "tmpl/live-tabbed-tmpl.html",
 "exampleCode": "live-examples/html-examples/td.html",
 "cssExampleSrc": "live-examples/html-examples/css/td.css",
 "fileName": "td.html",
 "title": "HTML Demo: <td>",
 "type": "tabbed"
}

	"baseTmpl" describes the basic template to use. All HTML examples use the "tmpl/live-tabbed-tmpl.html" template, which gives you the tabbed interface. JS and CSS examples use different templates.

	"exampleCode" is the path to the file containing the example HTML.

	"cssExampleSrc" is the path to the file containing the CSS for the example.

	"fileName" is the filename of the final (output) page that will contain this HTML example.

	"title" is the title to show in the example. For HTML element examples it should be "HTML Demo: <{name}>" where {name} is the name of the element.

	"type" describes the type of example to create. All HTML examples should put "tabbed" here.

Note that entries in pages are in alphabetical order, please preserve that when adding your page.

Once you've finished writing the example, see the Testing section for the next step.

The final example should look something like this:

[image: Final example]

Testing

From your command line run:

npm run build

Once this completes run:

npm start

This should give you some output including lines like:

Starting up http-server, serving ./docs
Available on:
 http://127.0.0.1:4444
 http://192.168.1.68:4444

Point your browser to either of those URLs, then click on the pages link. In the page that appears:

	CSS examples are under css

	JavaScript examples are under js

	HTML examples are under tabbed

Find your example and try it out. Once you're satisfied, submit your pull request [https://help.github.com/articles/creating-a-pull-request/].

Publishing

After your pull request is reviewed and merged, you can publish your example on MDN Web Docs. On the page that corresponds to the example, add the following to the page source (typically after the introductory paragraph):

<div>{{EmbedInteractiveExample("pages/TYPE/FILENAME")}}</div>

<p class="hidden">The source for this interactive example is stored in a GitHub repository. If you'd like to contribute to the interactive examples project, please clone https://github.com/mdn/interactive-examples and send us a pull request.</p>

where TYPE is the kind of example (such as js, css, or html) and FILENAME is the name of the file that contains the example (like margin.html or date-constructor.html).

Thank you!

Thank you for your contribution ~ o/\o

CSS examples style guide

A style guide for people contributing interactive CSS examples. To learn the mechanics of contributing, see the project README [https://github.com/mdn/interactive-examples/blob/master/README.md]. This article describes the characteristics that make a good example.

CSS examples consist of:

	an DOM element whose ID is "example-element"

	a set of choices, where each choice is one or more CSS property: value; declarations. One of these choices is selected initially, and the user can select a different choice. When a choice is selected, all the CSS declarations it contains will be applied to "example-element".

You can also supply additional DOM elements, where that makes sense. For example, the position [https://interactive-examples.mdn.mozilla.net/pages/css/position.html] example has one box which is the "example-element", but also includes extra boxes to show how setting the position property for an element interacts with the other elements in a layout.

You can also provide extra CSS both for the example element and any additional elements, where that makes sense. This CSS won't be shown in the choices, but will be applied. For example, the position [https://interactive-examples.mdn.mozilla.net/pages/css/position.html] example applies a different style to example-element (yellow with a red border) to distinguish it from the other boxes.

Specifying CSS choices

The most basic form of the CSS choices is a group of one-line CSS style declarations, where each line illustrates a different form of the property. For example:

	transform [https://interactive-examples.mdn.mozilla.net/pages/css/transform.html]

	filter [https://interactive-examples.mdn.mozilla.net/pages/css/filter.html]

	font [https://interactive-examples.mdn.mozilla.net/pages/css/font.html]

	text-overflow [https://interactive-examples.mdn.mozilla.net/pages/css/text-overflow.html]

This is the recommended style for most examples.

Vertical overflow

If the set of CSS choices overflows its container vertically, then the set's container gets a vertical scrollbar, and overflowed choices are not visible without scrolling. We want to avoid this if possible, because users will often not notice the overflowed choices.

To avoid vertical scrollbars, you have space for 6 one-line choices. If the property can take more than 6 forms (for example, for all the different filter [https://developer.mozilla.org/en-US/docs/Web/CSS/filter] functions then it is best to choose 6 that are illustrative. It's not essential to have an example for every form.

If the property takes fewer than 6 forms, it's fine to show fewer. For example: text-overflow [https://interactive-examples.mdn.mozilla.net/pages/css/text-overflow.html].

Horizontal overflow

If any CSS declaration overflows its container horizontally, then the container for its choice will get a horizontal scrollbar, and the part of the declaration that overflows will not be visible without scrolling. This isn't as bad for discoverability as vertical overflow, but we'd still prefer to avoid it.

So try to be concise in the syntax you use, but not at the expense of making the code understandable and good practice. Quite often you won't be able to avoid horizontal scrollbars: see background-image [https://interactive-examples.mdn.mozilla.net/pages/css/background-image.html] for example.

Multiple declarations

Sometimes you'll want to show extra CSS declarations, in addition to the one for the property you are illustrating. This is slightly unusual though, and should be used only where the extra properties are closely related to the property being illustrated.

For example, in the example for position [https://interactive-examples.mdn.mozilla.net/pages/css/position.html] we show top and left for forms like position: relative;, because they're needed to understand the effect of these declarations, and because we want to invite people to play around with those values.

But be restrained with this. Including unrelated declarations makes it harder to see what a specific example is intended to illustrate.

If you have multiple declarations, each one should occupy its own line. Note that position [https://interactive-examples.mdn.mozilla.net/pages/css/position.html] breaks this rule, because otherwise it would be impossible to fit relevant forms without having a vertical scrollbar. This is quite unsatisfactory though, and is only acceptable here because top and left are closely related to each other, and are only there in a "supporting" role: they are not the property being illustrated.

Comments

Since vertical space is at a premium, avoid comments unless they are really needed. Keep in mind that these are examples, not documentation in themselves.

Initial choices

By default, the first choice will be selected. You can override this by adding initial-choice="true" to the example-choice DIV:

<div class="example-choice" initial-choice="true">
 ...
</div>

Colour

The CSS interactive examples are visual in nature. Because of this, you will often need to make use of shapes, borders, lines etc. as part of your example. To maintain consistency with the MDN Web Docs [https://developer.mozilla.org] branding, please always refer to the colour style guide [https://schalkneethling.github.io/mdn-fiori/patterns/scss/variables/] when choosing colours.

We do acknowledge that this specific set of colours might not always work for your intended purpose. The above is therefore a guide, and is not meant to be hard and fast rules. Should you find that these colours cause legibility, and/or contrast problems, feel free to use a suitable substitute and make note of it in your pull request.

Specifying images

Sometimes you'll want to include images with the example. If you do:

	make sure their license allows you to use them. It's difficult for us to satisfy an attribution requirement with the editor, so try to use images that have a very permissive license such as CC0 [https://creativecommons.org/share-your-work/public-domain/cc0/].

	run them through https://tinypng.com or https://imageoptim.com, to reduce the page weight of the examples.

	For SVG, run the code through (SVGOMG)[https://jakearchibald.github.io/svgomg/], and ensure that the SVG file has an empty line at the end of the file

Output width considerations

On MDN pages the editor is laid out "side by side": that is with the example choices on the left and the output on the right, as it is in the local server that's started by npm run start. Then if the page width goes below some threshold it switches to "top and bottom", with the example choices above and the output below.

This means that ideally, the example should still work with an editor width of about 730 pixels: https://screenshots.firefox.com/YYrEvqLEmLjJCddS/developer.mozilla.org. This can be a difficult constraint to satisfy, but you should test at this width, and try to make it work, if it's possible.

CSS syntax

The interactive-examples project follows the same guidelines with regards to CSS code style as other projects that form part of the MDN Web Docs project. To ease review time for everyone, and ensure good coding practice, please review the guidelines on terminology [https://schalkneethling.github.io/mdn-fiori/patterns/css/terminology/] and formatting [https://schalkneethling.github.io/mdn-fiori/patterns/css/formatting/] when writing CSS.

JavaScript examples style guide

A guide for people wanting to contribute interactive JavaScript examples.

General guidelines

Variable naming

With regards to all aspects of the examples, we aim for consistency. A good starting point for this guide then, is to explain our naming conventions.

Numerical suffixes

One way we could maintain a certain consistency is to use the type of the object with a numerical suffix.

For example:

object1 = {};
var string1 = “a string”;
var array1 = ['a', 'b', 'c'];
var array2 = [1, 2, 3];

Note that even if there is only one instance of that object, it should be suffixed with a 1.

Also note that, although we could use the same name for multiple instances, it's suggested that we use a progressive numbering system. This aims to minimize confusion should the reader want to experiment with the example code.

For example:

var array1 = ['a', 'b', 'c'];

console.log(array1);
// expected output: Array ["a", "b", "c"]

var array2 = [1, 2, 3];

console.log(array2);
// expected output: Array [1, 2, 3]

Descriptive suffixes

An alternative to using numerical suffixes could be to use more descriptive suffixes, such as arrayLetters and arrayNumbers in the above examples.

This may make more sense in the context of the following example:

var collatorDe = new Intl.Collator('de', { usage: 'search', sensitivity: 'base' });
var collatorFr = new Intl.Collator('fr', { usage: 'search', sensitivity: 'base' });

We can also use content-descriptive variable names that don't mention the type of object that they represent, for example:

var beasts = ['ant', 'bison', 'camel', 'duck', 'bison'];

Example size

The aim is to try and fit examples into 12 lines of code, only if it's not possible to create a useful example in 12 should we write longer examples.

Tangible examples

When illustrating a programming concept, it is beneficial to mimic real world examples as much as possible. Once you have chosen your real world theme, stick to the theme throughout the specific example.

For example:

function monster1(disposition) {
 this.disposition = disposition;
}

var handler1 = {
 construct: function(target, args) {
 console.log('monster1 constructor called');
 // expected output: "monster1 constructor called"

 return new target(...args);
 }
};

var proxy1 = new Proxy(monster1, handler1);

console.log(new proxy1('fierce').disposition);
// expected output: "fierce"

Providing context

Where possible, it is useful to provide examples showing how a method could be used in the context of a function or class. In instances where a succinct example is not possible, a series of console.log statements can also be a valid way of illustrating an example.

Indicating console.log output

To indicate the ouput we expect, we place a comment // expected output: on the line below each console.log.

Representing browser differences

Occasionally browsers will produce different results, in these cases we can denote the varying output like so:

console.log(matchesDe);
// expected output (Chrome / Firefox): Array ["Bären"]
// expected output (Safari): Array ["Bären", "Baren"]

Dealing with errors

Writing code that will throw an error can be useful way to illustrate an example. However, an uncaught error will halt execution immediately and will not display the results of any console.log statements in the example.

If you wish to use an error to illustrate a method, wrap it in a try/catch block for example:

try {
 Intl.getCanonicalLocales('EN_US');
} catch (err) {
 console.log(err);
 // expected output: RangeError: invalid language tag: EN_US
}

JavaScript coding style

Language choice (ES5/ES6)

For more established example content, such as Arrays, it is recommended that we stick with ES5. Where examples are required for APIs standardized after ES6, aim to use ES6 to illustrate these examples.

ES6 examples should use:

	let and const instead of var

	Arrow functions (=>) for Anonymous Functions (see below)

	Template literals (string text ${expression} string text)

	Spread syntax (myFunction(...iterableObj);)

Semi-colons

There are valid arguments for and against using semi-colons. We use them.

Line spacing

To fit the space available we try and keep examples as compact as possible, using blank lines sparingly to increase readability.

One place we use a blank line is immediately preceding a console.log statement unless it is the first line in a block.

For example:

construct: function(target, args) {
 console.log('monster1 constructor called');
 // expected output: " constructor called"

 return new target(...args);
}

and

var proxy1 = new Proxy(monster1, handler1);

console.log(new proxy1('fierce').disposition);
// expected output: "fierce"

Indentation

In order to keep things as concise as reasonably possible we indent with two spaces.

Instantiating an object

Most objects are instantiated in the normal way, for example:

var date1 = new Date();

The exception being Object in which case we instantiate like so:

var object1 = {};

Instantiating an array

We instantiate arrays in the following way:

var array1 = [2, 5, 7, 9];

Note the spacing after the commas.

Passing parameters

We use a space after commas when passing parameters to a function, but do not pad the parenthesis: i.e.

calcAngle(8, 10);

Single quotes

We use Single quotes to denote strings:

setTimeout(resolve, 100, 'foo');

Property definition

We chose clarity over brevity when defining object properties, for example:

var object1 = {
 property1: 42,
 property2: 'foo'
};

(Note the space after the colon.)

Please do NOT put the definition on one single line:

var object1 = {property1: 42, property2: 'foo'};

Spaces between operators

For example:

var a = 1 + 2;

if (a > b) {
 return a;
}

Function definition

Generally functions are defined with the function keyword at the beginning and the function name starts with a lowercase letter and can be camelCased:

function sum(a, b) {
 return a + b;
}

Note the space before the opening curly brace.

Anonymous function definition

Where ES6 predates the method or object we're illustrating we use the arrow function:

var sum = array1.reduce((a, b) => a + b);

rather than:

var sum = array1.reduce(function(a, b) {
 return a + b;
});

Class definition

As classes were introduced with ES6, we can use other ES6 concepts when defining them such as const. We also need to be aware of the changing scope of this.

Class names should be capitalised and camelCased, for example:

class Employee {
 constructor() {
 this.alive = true;
 }

 setSkills(skills=[]) {
 const defaultSkills = ['JavaScript'];
 this.skills = skills.concat(defaultSkills);
 }
}

Return early from if statements

Only use an else if the preceding if clause doesn't return.

For example:

if (a > b) {
 return a;
}
return b;

rather than:

if (a > b) {
 return a;
} else {
 return b;
}

Formatting switch statements

var expr = 'Pears';
switch (expr) {
 case 'Oranges':
 console.log('Oranges are $0.59 a pound.');
 break;
 case 'Apples':
 console.log('Apples are $0.32 a pound.');
 break;
 default:
 console.log('Sorry, we are out of ' + expr + '.');
 // expected output: "Sorry, we are out of Pears."
}

Testing for equality

When testing for equality use Strict Equality Comparison, for example:

if (a === b) {
 return a + b;
}

if (a !== b) {
 return a - b;
}

interactive-examples

[image: Build Status] [https://travis-ci.org/mdn/interactive-examples]

[image: code style: prettier] [https://github.com/prettier/prettier]

Home of the MDN [https://developer.mozilla.org/] interactive code examples.

Folder structure

	[css] - This contains the CSS used by the base templates.

	[js] - This contains the JS used by the base templates.

	[live-examples] - This contains the live example CSS and JS fragments.

	[media] - The contains images used by the live examples and templates.

	[tmpl] - The base templates.

The dynamically generated pages, their dependencies, and assets are generated to the prod branch.

Browser support baseline

The following is a list of browser/version combinations that are supported by the interactive editor. In browsers that do not meet the criteria, the editor degrades gracefully to displaying static examples.

	Firefox - Latest three release versions.

	Chrome - Latest three release versions.

	Opera - Latest two release versions.

	Safari - Latest two release versions.

	Internet Explorer - version 11.

	Edge - Latest release version.

Contributing

If you're interested in contributing to this project, great! Please see the CONTRIBUTING document.

Contributors

Thanks goes to these wonderful people (emoji key [https://github.com/kentcdodds/all-contributors#emoji-key]):

| [_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/9e834e75-98a7-4c57-be32-455138aa8c69.png
AP HTML Demo:

Ty -

1 <table>

2 <theacs
3 <tr> A cell value || Another cell
4 <th colspan="3">Table heading</th> 2-row cell

5 </tr> 2-column cell

6 </thead>

7 <tbody>

8 <tr>

9 <td rowspan="2">2-row cell</td>

10 <td>A cell value</td>

11 <td>Another cell</td>

12 </tr>

13 <tr>

14 <td colspan="2">2-column cell</td>

_images/fff1dc63-ad6c-4a97-b20a-52b605e7994c.png
<thead>
<tr>
<th colspan="2">The table header</th>
</tr>
</thead>
<tbody>
<tr>
<td>The table body</td>
<td>with two columns</td>
</tr>
</tbody>
<tfoot>
<tr>

The table header

The table body

with two columns

The table footer

_static/minu